
COMBINATORIAL GAME THEORY IN LEAN

ISABEL LONGBOTTOM

Abstract. This report outlines the results of and problemswith a project to formalise the
basic theory of combinatorial games in the functional programming language Lean. Com-
binatorial gameswere defined, alongwith addition and negation operations on games. An
equivalence relation on games was also defined, under which combinatorial games form
an abelian group. The required lemmas to prove that this is an abelian group were stated,
although not all of the required proofs were completed. Major problems encountered
included difficulties demonstrating that various relevant recursive functions were well-
defined, and issues with formulating the definition of addition in a way which made the
required proofs easy to construct.

1. Introduction

1.1. A Background on Combinatorial Game Theory. In the theory, a combinatorial
game is a two player, deterministic game with complete information. A game must even-
tually end, draws are not possible, and the first player to be unable to make a legal move
loses. We denote the two players by Left and Right. A game has some number of left
options, comprising the allowable moves for Left, and some number of right options, the
allowable moves for Right. Each of these options is itself a game, again described by the
allowable moves for Left and Right. A game is uniquely determined by its left and right
options; as such, a game can be defined mathematically as an ordered pair of (indexed)
sets of games. That is, if L,R are sets of games, then G := (L,R) is the game whose
left options come from L and whose right options come fromR. The requirement that all
games must end is known as the Descending Game Condition. This condition states that
there is no infinite sequence of games such that each term of the sequence is a left or right
option of the previous term.
The notation

G = ({GLi |i ∈ GL}, {GRj |j ∈ GR})
can be used for a game G with left options indexed by GL and right options indexed by
GR. Note that the left or right options of G may be empty.
From the above mathematical definition of a game, an induction principle on games can
be obtained, called Conway Induction. This is stated as follows:

Theorem. Suppose P is a property which a given game may or may not have. If a game
G has property P whenever all left and right options of G have property P , then all games
have property P .

This can be proven directly from the definition of a game and the descending game con-
dition.
Armed with this definition and the induction principle, an additive structure can be de-
fined on combinatorial games such that they form an abelian group. To define the sum of

Date: May 2019.
1

2 ISABEL LONGBOTTOM

two games A and B, imagine placing them side by side on a table. When it is Left’s turn
to move, she may choose to move either in game A or in game B, but not both. The sum
of two games G and H can thus be defined algebraically as follows:

Definition. If
G = ({GLi |i ∈ GL}, {GRj |j ∈ GR})
H = ({HLi |i ∈ HL}, {HRj |j ∈ HR})

then the sum is given by

G+H := ({GLi+H|i ∈ GL}∪{G+HLi |i ∈ HL}, {GRj+H|j ∈ GR}∪{G+HRj |j ∈ HR}).

Note that the left options here are indexed by the union GL ∪HL and similarly the right
options are indexed by GR ∪HR.
A game can also be negated by switching its left and right options and negating all of its
options. Algebraically, this is:

Definition. If G = ({GLi |i ∈ GL}, {GRj |j ∈ GR}), the negative game is defined as

−G := ({−GRj |j ∈ GR}, {−GLi |i ∈ GL}).

It can be shown using Conway Induction that this definition of addition is commutative
and associative.
An order on games based on who has a winning strategy can also be defined. A player
(Left or Right) wins a game if it is her opponent’s turn and her opponent has no valid
moves. That is, Left wins if it is Right’s turn and the set of Right options is empty, and
analogously for Right. Also, Left (resp. Right) has a winning strategy in some game G
if there exists a sequence of valid moves for Left such that no matter which move Right
selects each turn, Left will win. That is, there exists a left option GL of G such that in
every right option of GL, Left can win if she goes first — so Left can win G if she goes
first — and for every right option GR of G, there exists some left option of GR in which
Left can win if she goes second — so Left can win G if she goes second.
Four possible outcome classes of a gameG can now be defined. G is a zero game (written
as G = 0) if there is a winning strategy for the second player no matter who starts;
similarly, define G as being fuzzy to zero (or just fuzzy) if there is a winning strategy for
the first player, no matter who starts. G is positive (written G > 0) if there is a winning
strategy for Left (no matter who starts) and G is negative (G < 0) if there is a winning
strategy for Right no matter who starts. It can be shown that for any two-person zero
sum game these cases are exhaustive, and disjoint. Also, each of these properties can
be defined recursively. For example, a game G is a zero game if each of its left options
has a winning strategy for Right, and each of its right options has a winning strategy
for Left. So a game is a zero game exactly when each of its left options is either fuzzy
or negative, and each of its right options is either fuzzy or positive. (Note that once the
game has moved to either a left or right option, the player whose turn it is has been fixed,
since alternating turns are enforced. Hence in each left option it is sufficient to require
that there be a winning strategy for Right if Right goes first, and analogously for the left
options.)
Similar definitions can be made for negative, positive, and fuzzy games. It can be shown
that these relations define an order on combinatorial games, but this was not a focus for
this project. We were instead interested in defining the equivalence relation on games
given by writing G ∼= H if G − H is a zero game, using the definitions of addition
and negation above. It can be shown that this is in fact an equivalence relation, that the

COMBINATORIAL GAME THEORY IN LEAN 3

addition defined above respects the equivalence classes generated by this relation, and
that modulo this equivalence relation combinatorial games form an abelian group under
the inherited addition operation. Note that in the theory, commutativity and associativity
of the operation are inherited from commutativity and associativity on combinatorial
games without the relation. Introducing the relation makes −G a true inverse for G.
That is, this completes the group structure by providing inverses.
One final thing to note is that this is the notion of equivalence we want for games, since
it interacts well with the four possible outcome classes (positive, fuzzy, negative, and
zero). It can be shown, for example, that if you add a zero game to any other game
then you preserve its outcome class and similarly if H is equivalent to K then the sums
G+H,G+K always have the same outcome.

1.2. A Background on Dependent Type Theory and Lean. What follows is a brief
description of the functional programming language Lean in which this project was con-
ducted, and its underpinning dependent type theory system.
Lean was developed as a tool for checking the correctness of program optimisation, but
has since come into use as an interactive theorem proving language for mathematics.
The power of the language comes from the fact that it can be used both to write proofs
interactively, and to write automated tools (called tactics) which can then be used to assist
proof-writing. The language is concerned both with generating proofs and with checking
them for correctness. By keeping these two parts of its machinery distinct, and keeping
the section used for checking the correctness of proofs minimal, a high level of confidence
in its results can be ensured.
Where much of normal mathematics is based on the Zermelo-Fraenkel axioms of set the-
ory, Lean is instead constructed on the alternate axiomatic basis of dependent type theory.
Instead of having sets containing elements, we have types and terms of a type. We write
a : A to mean a is a term of type A . Everything in Lean has exactly one type, in-
cluding types themselves; this means, for example, that to use a natural number as a real
number, we require a type coercion from one into the other (this corresponds to a set
inclusion in set theory).
In order to formalise mathematical statements in Lean, the type Prop was introduced.
Like any other type, this type can have terms. A term of type Prop (that is, a statement) is
considered to be true if it is inhabited (if there exists a term of that type) and false if it is not
inhabited. So a proof of a proposition is provided by constructing a term of the correct
type. With this interpretation of elements of a type, a function from one proposition
to another is simply a function which takes a term of one type (that is, a proof of one
of the statements) and produces a term of the second type (that is, a proof of the other
statement). This means that for A B : Prop , a function f : A → B is equivalent
to a proof of the implication A =⇒ B.
We can similarly transfer many of the standard logical concepts into this context, such
as ∨,∧, ⇐⇒ and so on. Note that unlike the Zermelo-Fraenkel system, dependent type
theory is not built on first order logic as a metatheory. Instead, we model propositional
logic internally, so that the above equivalence allows us to define logical implications in
terms of types. In this context, checking a proof for correctness means checking that
the proof term is of the required type. In general this process is substantially easier than
constructing the proof term, and easy to do correctly.
We now consider some specific parts of Lean which were particularly relevant to this
project.

4 ISABEL LONGBOTTOM

When making an inductive definition in Lean, several auxiliary functions are automati-
cally generated as part of the compilation of the definition. This usually includes, among
other things, an induction principle. A simple example is as follows: we make the defini-
tion
inductive countable : Type
| base : countable
| next : countable → countable

(which of course is just the natural numbers renamed) and then using #print prefix countable ,
we can see the related functions that have been created. In the context of this project, we
are interested in three of these functions:
countable.sizeof : countable → ℕ
countable.next.sizeof_spec : ∀ (a : countable),

countable.sizeof (countable.next a) = 1 + sizeof a
countable.rec : Π {C : countable → Sort l},

C countable.base → (Π (a : countable),
C a → C (countable.next a)) → Π (n : countable), C n

Here countable.rec is the recursion principle for this inductive type, and countable.sizeof
is an automatically generated size function which in some sense measures how far from
the base case a specific term of this inductive type is.
The corresponding functions for combinatorial games played an important role in many
of the proofs constructed as part of this project.
Finally, we discuss well-founded recursion in Lean. In order to construct a recursive
definition (on an inductive type), a proof that the recursion is well-founded is required.
This generally amounts to showing that the recursion is decreasing. That is, proving that
the value of the recursive function on any specific (finite) input can be calculated by a
terminating process (in a finite number of applications of the recursive function). Lean
can often infer this proof on standard inductive types. The implementation of this can be
explained in a simplified form as follows: if we have a recursive definition

def f : countable → countable
def g : countable → ℕ

def rec : countable → ℕ
| base := 0
| (next a) := g a + rec (f a)

then to show that this recursive definition is decreasing andwell-founded, we are required
to show that f a has a smaller size than next a . The means we have of comparing
these sizes is to apply the automatically-generated sizeof function. Formally, wemust
prove that

countable.sizeof (f a) < countable.sizeof (next a)

for every a : countable . This inequality of course depends on the function f . For
example, if we define

def f (a : countable) : countable := next a

then the inequality we want to prove becomes

COMBINATORIAL GAME THEORY IN LEAN 5

countable.sizeof (next a) < countable.sizeof (next a)

which is clearly always false. This makes sense, as in the definition of rec we have
defined
rec (next a) := g a + rec (next a)

which is clearly not a sensible (or valid) definition.

1.3. Project Summary. We attempted to formalise the definition of a combinatorial
game in Lean. We defined combinatorial games, their addition and negation, and the
four possible outcome classes (positive, negative, fuzzy, or zero). We were then able to
construct the equivalence relation on games which is used to define the abelian group of
games.
Apart from proving a couple of important lemmas, we were able to prove that the relation
we defined was an equivalence realtaion, and were then able to prove that the quotient
by this equivalence relation is an abelian group. We were also able to prove several useful
lemmas regarding the outcome classes.
Proving that the quotient was an abelian group was substantially more difficult than an-
ticipated. This was because our implementation of a game in Lean required that the left
and right options be ordered in some deterministic way, and commuting two games in
a sum or changing the order of addition reorders the left and right options in the result-
ing game. So in the context of our definition, addition of games was not commutative
or associative until after applying the equivalence relation described above. This meant
that many of the simple proofs used in the mathematical theory did not transfer to this
context.

2. A First Attempt at Defining Combinatorial Games

2.1. Definition of a Game. Our first working attempt at defining a combinatorial game
was to define a game inductively as two lists of games, representing the left and right
options. We used:

inductive game₁ : Type
| intro : Π L R : list game₁, game₁

def game₁.L : game₁ → list game₁
| (game₁.intro L R) := L
def game₁.R : game₁ → list game₁
| (game₁.intro L R) := R

This definition had several problems:
• an induction principle on games (equivalent to Conway Induction1) was not gen-

erated automatically, so this was something we had to prove by hand
• reordering a list does not preserve equality, so the definition of addition of games
here was not quite associative, since performing addition operations in a different
order caused the left and right options of the result to be reordered within the list

1In fact, an induction principle was generated automatically. However, it was difficult to decipher, and did
not seem to be equivalent to Conway Induction. As such, it was not useful. See section 2.3.

6 ISABEL LONGBOTTOM

• in general, a proof that a given recursive definition was decreasing and well-
founded could not be generated automatically, so had to be constructed manually
for any recursive definition on games.

The final issue here was the most difficult to overcome, and was the eventual reason this
definition was abandoned for a more generalised version. A discussion of this follows.

2.2. Well-Founded Recursion. With the above definition, Lean was unable to auto-
matically generate a proof of well-founded recursion for any of the inductive definitions
made on game₁ (including addition, negation, Conway Induction, and the definition of
a zero game). We use addition to exhibit the problem and the workaroundwe constructed.
We would like to define addition as
def add : game₁ → game₁ → game₁
| G1 G2 := intro
(list.map (add G1) G2.L ++

list.map (λ (g : game), add g G2) G1.L)
(list.map (add G1) G2.R ++

list.map (λ (g : game), add g G2) G1.R)

However, when we make this definition, it fails to compile with the error message
failed to prove recursive application is decreasing, well
founded relation.

One solution to this problem is to append the block
using_well_founded
{dec_tac := my_dec_tac,
rel_tac := λ _ _, `[exact ⟨_, measure_wf sizeof⟩]}

to this definition (and any other where well-founded recursion must be provedmanually).
This tells Lean to use the inferred sizeof instance for game₁ for measuring what
it means for the recursive application to be decreasing, and the tactic my_dec_tac
to construct the proof term. We can then prove some appropriate lemmas and define
my_dec_tac to apply them. By at first defining my_dec_tac to do nothing, we see
that the proof term we require takes the form
⊢ has_well_founded.r ⟨G1, g⟩ ⟨G1, G2⟩

This is not a particularly enlightening goal, but using dsimp to expand several defini-
tions related to well-founded recursion, we can eventually reduce the goal to something
similar to
G1 G2 a : game₁,
⊢ 1 + game₁.sizeof G1 + game₁.sizeof a

< 1 + game₁.sizeof G1 + game₁.sizeof G2

So, we must prove game₁.sizeof a < game₁.sizeof G2 . This turns out to be
impossible, since we have no hypothesis in the local context relating a to G2 , and this
inequality certainly doesn’t hold for arbitrary games a, G2 . Examining our definition
of addition, we see that the variable a was introduced as a placeholder in one of the func-
tions beingmapped across a list, so represents an element of one of G2.L, G1.L, G2.R, G1.R .
Specifically, an error message is being generated at the first recursive application of add

COMBINATORIAL GAME THEORY IN LEAN 7

since this is the first place we must generate a proof of well-founded recursion, so in the
goal above a represents an element of G2.L .
We now need two things to be able to prove well-foundedness:

• a proof that if a ∈ G.L then game₁.sizeof a < game₁.sizeof G

and equivalently for the case where a is a right option of G ; and
• some way to force the hypothesis a ∈ G.L into the local context so that we
can apply our lemma.

The first of these is quite straightforward; we can prove

lemma sizeof_decr {g : game₁} {L : list game₁}
(h : g ∈ L) : game₁.sizeof g < sizeof L := sorry

by induction on the list L , and then this can be applied to both the left and right cases
since game₁.sizeof (intro L R) := 1 + sizeof L + sizeof R .
The second is more difficult. The solution we found was to define a new function to use
in place of list.map in the definition of addition. We defined

def map_mem {α β : Type*} :
Π (L : list α), (Π (x : α), (x ∈ L) → β) → list β
| [] f := []
| (y :: ys) f := (f y (list.mem_cons_self y ys)) ::

map_mem ys (λ (x : α) (mem : x ∈ ys),
f x (list.mem_cons_of_mem y mem))

This function gives the same output as list.map , but its function argument has a
different type. By making one of the arguments of the mapping function be a state-
ment about membership in the list being mapped over, we force this hypothesis into
the local context of any function definition in which map_mem is used. By redefining
addition in terms of map_mem , we were thus able to modify the tactic state handed to
my_dec_tac to include the appropriate hypothesis a ∈ G1.L, a ∈ G2.L, a ∈ G1.R

or a ∈ G2.R . This allowed us to construct a working definition of addition.
However, this was by no means a complete solution to the problem of proving well-
founded recursion. As we defined further recursive functions on game₁ , similar but
slightly different tactics were required to demonstrate well-founded recursion, with sev-
eral addition lemmas about game₁.sizeof, list.sizeof also needed. Thismade
many of the definitions slightly harder to work with, since instead of using functions
from mathlib such as list.map , about which some things have already been proven,
we were required to define new functions like map_mem .

2.3. The Inferred Induction Principle Versus Conway Induction. It is worth em-
barking on a brief detour at this point to consider our implementation of Conway Induc-
tion for this definition of a combinatorial game. Looking at the automatically generated
induction principle for game₁ , we have

game₁.rec : Π (C : game₁ → Sort l),
(Π (L R : list game₁), C (game₁.intro L R))

→ Π (x : game₁), C x

This effectively says that if we have any proposition about game₁ (or function with
domain game₁) and we can prove that it is true (or well-defined, in the function case)

8 ISABEL LONGBOTTOM

of the game formed from any two lists of games, then it is true of all games. This is true,
but it is not a particularly useful induction principle; we could construct a short proof
ourselves as follows:

lemma game₁.rec : Π (C : game₁ → Sort l),
(Π (L R : list game₁), C (game₁.intro L R))

→ Π (x : game₁), C x :=
begin

intros C h x,
induction x with L R,
exact h L R,

end

We note that the induction principle generated here is not just different to Conway In-
duction, it is a weaker statement and will be substantially less useful in later proofs. So,
we must define and prove Conway Induction by hand.
We use the following definition:

def Conway_ind (P : game₁ → Prop)
(w : Π (g : game₁), ((Π l : game₁, (l ∈ game₁.L g → P l))

∧ (Π r : game₁, (r ∈ game₁.R g → P r))) → P g)
: Π G, P G
| (intro L R) :=
begin

apply w,
split,
{ intros l H,

exact Conway_ind l, },
{ intros r H,

exact Conway_ind r, }
end

and we note that this must be a def not a lemma or theorem as this allows us to
construct the proof inductively. As with our definition of addition, Lean requires us to
demonstrate that the recursion in this definition is well-founded; the proof is similar to
that of addition, and the details are uninteresting. The significance of this example stems
from the fact that this proof clearly depends substantially on the fact that the recursion
is well-founded. For example we could attempt to construct the proof as

def Conway_ind' (P : game₁ → Prop)
(w : Π (g : game₁), ((Π l : game₁, (l ∈ game₁.L g → P l))

∧ (Π r : game₁, (r ∈ game₁.R g → P r))) → P g)
: Π G, P G
| (intro L R) :=
begin

exact Conway_ind' (intro L R),
end

and this is clearly not a valid proof. This generates a similar error message about a failure
to show decreasing well-founded recursion, but with the goal as ⊢ 1 < 1 instead of

COMBINATORIAL GAME THEORY IN LEAN 9

something similar to what was generated when we were constructing the proof for addi-
tion. This is reassuring in that the goal here is false, so this incorrect proof would likely
not be able to be made acceptable, and also emphasises the importance of demonstrating
that any use of recursion is well-founded and decreasing.

3. A Better Attempt

3.1. Arbitrary Indexing. Many of the problems we encountered in our first attempt at
defining combinatorial games were caused by the fact that most of the things we needed,
such as an induction principle, could not be generated automatically. This is somewhat
unusual; in general, we should expect that in the process of compiling the definition of
an inductive type, a (useful) induction principle for that type should be generated. In the
hope of being able to automatically generate a version of Conway Induction, we made a
more general definition of a game

inductive game : Type (u+1)
| intro : Π (l : Type u) (r : Type u)

(L : l → game) (R : r → game), game

In this definition, the left options of a game intro l r L R are indexed over the
type l , with the function L mapping from the indexing set to the games which are
the left options, and similarly the right options are indexed over the type r . Requiring
l, r to be subsets of the natural numbers recovers something equivalent to our previ-
ous definition, where the left and right options were elements of a list (with the empty
list corresponding to the empty set, and finite length lists corresponding to finite sub-
sets of N). However, in this new definition the left options could be indexed by, say, R,
which does not correspond to a (countable) list. Hence this is a true generalisation of our
previous definition.
With this definition, Lean was able to infer an induction principle, of the form

game.rec : Π {C : game → Sort l},
(Π (l r : Type u) (L : l → game) (R : r → game),

(Π (a : l), C (L a)) → (Π (a : r), C (R a))
→ C (game.intro l r L R)) → Π (n : game), C n

which is exactly the form Conway Induction takes in this arbitrary indexing context. This
makes the more general definition seem more promising than our first attempt.

3.2. Positive, Negative, Fuzzy, and Zero Games. We wish to define each of the four
outcome classes recursively. We note that in such a definition, each of these outcome
classes would depend on at least two of the others, so we would have to define these
four properties in a mutually recursive way. Lean has the syntax mutual def for
this purpose. However, if we use this method then the resulting function we generate
will likely not be particularly nice, and the Lean compiler may not be able to gener-
ate a proof that the recursion is well-founded. We can instead define the statements
positive G ∨ fuzzy G (that is, Left has a winning strategy if she goes first) and
negative G ∨ fuzzy G (that is, Right has a winning strategy if he goes first) in a
mutually recursive manner, and then define the four outcome classes we want in terms
of these two things. We make the definition

10 ISABEL LONGBOTTOM

def is_pos_fuzz_is_neg_fuzz (x : game) : Prop × Prop :=
begin

induction x with xl xr xL xR IHxl IHxr,
dsimp at *,
exact (∃ i : xl, ¬(IHxl i).2, ∃ i : xr, ¬(IHxr i).1)

end

def is_pos_fuzz (x : game)
:= (is_pos_fuzz_is_neg_fuzz x).1
def is_neg_fuzz (x : game)
:= (is_pos_fuzz_is_neg_fuzz x).2

This definition can be interpreted as saying that the game G is positive or fuzzy if there
exists some left option where Left has a winning strategy if Right goes first, and nega-
tive or fuzzy if there exists some right option where Right has a winning strategy if Left
goes first, which is the correct definition. As with the definition of addition (discussed
in section 3.3), this definition is not actually recursive except in that it uses the induction
principle for games to generate IHxl, IHxr , so we have no issues with well-founded
recursion. We then define the compound statements:
def is_zero : game → Prop
| G := (¬ is_pos_fuzz G) ∧ (¬ is_neg_fuzz G)
def is_fuzz : game → Prop
| G := is_pos_fuzz G ∧ is_neg_fuzz G
def is_pos : game → Prop
| G := (is_pos_fuzz G) ∧ ¬ (is_fuzz G)
def is_neg : game → Prop
| G := (is_neg_fuzz G) ∧ ¬ (is_fuzz G)

to get the four outcome classes we want. Using these definitions, and proving several
intermediate lemmas, we can formulate each of these statements in terms of the other
three, so that when working with the four outcome classes we do not require recourse to
is_pos_fuzz_is_neg_fuzz .
This allows us to effectively define each outcome class in terms of universal and existential
statements about the outcome classes of the left and right options — that is, in the formwe
wish to use them — by proving @[simp] lemmas for each outcome class, but without
defining them in the first place as a complicated mutual def for which wemust prove
well-founded recursion by hand. This also produces much simpler proofs that the four
outcome classes are exhaustive and disjoint than we had previously with the definitions
for game₁ .

3.3. Addition and Negation in this Context. With this definition of a combinatorial
game, wewere able to define negationwithout providing an explicit proof of well-founded
recursion. We defined
def neg : game → game
| ⟨l, r, L, R⟩ := ⟨r, l, λ i, neg (R i), λ i, neg (L i)⟩

and the Lean compiler was able to automatically construct a proof of well-founded recur-
sion. We were also able to prove that negating a game twice returns the original game
directly from the definition and using Conway induction.

COMBINATORIAL GAME THEORY IN LEAN 11

Defining addition was more difficult. We initially constructed the following definition
using the induction principle on game :

def add (x y : game) : game :=
begin

induction x with xl xr xL xR IHxl IHxr,
induction y with yl yr yL yR IHyl IHyr,
dsimp at *,
refine ⟨xl ⊕ yl, xr ⊕ yr, sum.rec _ _, sum.rec _ _⟩,
{ exact IHxl },
{ exact IHyl },
{ exact IHxr },
{ exact IHyr }

end

This definition is only recursive in that it uses the recursor on game to generate the
functions IHxl, IHxr, IHyl, and IHyr. It doesn’t actually call itself in its definition. This
means that no proof of well-founded recursion is required. However, this definition of
addition turns out to not be very useful. Consider the following lemma:

lemma is_zero_sub {G : game} : is_zero (G - G) := sorry

The standard mathematical proof of this fact proceeds as follows:

Proof. We show that the second player has a winning strategy. Observe first that the valid
moves for Left in −Gmatch the valid moves for Right inG, and vice versa. Without loss
of generality, suppose Right goes first. If Right has a valid move inG, sayGR, then−GR

is a left option in −G. Left can thus choose this move, and the players reach the game
GR −GR, with it being Right’s turn. By (Conway) induction, this is a zero game, so Left
— being the second player — has a winning strategy. This is true no matter which right
option ofG Right chooses as his move, so Left can win no matter which right option ofG
Right picks. Similarly, if Right instead chooses to move in −G, taking the option −GL,
then GL is a left option of G, so Left has a valid move. This puts the players in the game
GL − GL, which again has a winning strategy for the second player, Left. So in either
case, Left has a winning strategy. The proof is similar if Left goes first.
Intuitively, the second playermaywin by alwaysmaking the samemove as the first player
just made, in the other game. Then the two boards will alwaysmatch, so the second player
can continue in this manner, and will never be lost for a move so cannot lose. �

It should be possible to prove this lemma using our definitions in a similar manner, using
the idea that the second player always copies the first player’s move, and considering 4
analogous cases (corresponding to Left playing first in G, Left playing first in −G, Right
playing first in G, and Right playing first in −G), applying Conway Induction in each.
However, this approach encounters a substantial roadblock when we try to unfold the
definition of addition. We would like to be able to rewrite the addition in some way
which makes it clear that the left options of G−G take the form G−GL, GL −G and
similarly for the right options. To do this, we define a lemma:

12 ISABEL LONGBOTTOM

@[simp] lemma add_def {xl xr xL xR yl yr yL yR} :
add (intro xl xr xL xR) (intro yl yr yL yR) =

intro (xl ⊕ yl) (xr ⊕ yr)
(λ xy, sum.cases_on xy
(λ xy : xl, add (xL xy) (intro yl yr yL yR))
(λ xy : yl, add (intro xl xr xL xR) (yL xy)))
(λ xy, sum.cases_on xy
(λ xy : xr, add (xR xy) (intro yl yr yL yR))
(λ xy : yr, add (intro xl xr xL xR) (yR xy)))

:= sorry

and then instead of using dsimp[add] to unfold the definition of addition, we can use
rw add_def to get the result in a more useful form. However, we were not able to
complete the proof of this lemma. This is because it is not actually true, and suggests
that this definition of addition is not constructing the left and right options in the way
we want. So we require a different definition of addition.
If we try to define addition directly in the form we want, as something like:

def add' : game → game → game
| (intro xl xr xL xR) (intro yl yr yL yR) :=
⟨xl ⊕ yl, xr ⊕ yr,

(λ xy, sum.cases_on xy
(λ xy : xl, add' (xL xy) (intro yl yr yL yR))
(λ xy : yl, add' (intro xl xr xL xR) (yL xy)))
(λ xy, sum.cases_on xy
(λ xy : xr, add' (xR xy) (intro yl yr yL yR))
(λ xy : yr, add' (intro xl xr xL xR) (yR xy)))⟩

then we encounter the same well-foundedness issues as in our definition game₁ . We
could potentially resolve these issues in a similar way as discussed above, however in this
context the automatically generated game.sizeof function is not as useful, since it is
defined as

game.intro.sizeof_spec : ∀ (l r : Type u)
(L : l → game) (R : r → game),

game.sizeof (intro l r L R) = 1

and so if we try to use this concept of size to demonstrate well-foundedness, we get the
goal

⊢ game.sizeof (xL xy) < game.sizeof (intro xl xr xL xR)

or equivalently ⊢ 1 < 1 , which we cannot prove. Instead, we modify our original
attempt at defining addition to be:

COMBINATORIAL GAME THEORY IN LEAN 13

def add (x y : game) : game :=
begin

induction x with xl xr xL xR IHxl IHxr generalizing y,
induction y with yl yr yL yR IHyl IHyr,
have y := intro yl yr yL yR,
refine ⟨xl ⊕ yl, xr ⊕ yr, sum.rec _ _, sum.rec _ _⟩,
{ exact λ i, IHxl i y },
{ exact λ i, IHyl i },
{ exact λ i, IHxr i y },
{ exact λ i, IHyr i }

end

which compiles correctly. This definition is also mathematically correct, since we note
that the lemma add_def is reflexively true under this definition of addition (that is, it
can be proved by refl).

3.4. The Equivalence Relation - Required Proofs. We will now discuss the equiva-
lence relation we wish to define on games so that they form an abelian group. We define

def equiv (G H : game) : Prop := is_zero (add G (neg H))

and we wish to prove several things about this definition:
(1) that it is an equivalence relation (that is, we must prove reflexivity, symmetry,

and transitivity);
(2) that the addition operation we defined on games respects the equivalence classes

under this relation; and
(3) that games form an abelian group under this relation.

We progressed to the point of stating and proving these facts, assuming one lemmawhich
we were unable to prove. Reflexivity, symmetry and transitivity can be stated as follows:

theorem equiv_refl {G : game} : equiv G G := sorry

theorem equiv_symm {G H : game}
(h : equiv G H) : equiv H G := sorry

theorem equiv_trans {G H K : game}
(h₁ : equiv G H) (h₂ : equiv H K)
: equiv G K := sorry

Similarly, we can state the theorem we need to show that the definition of a addition on
games extends to one on equivalence classes of games as follows:

theorem add_resp_equiv (G J H K : game) (h : equiv G H)
(k : equiv J K) : equiv (G + J) (H + K) := sorry

since together these two theorems prove that addition of equivalence classes (defined by
choosing an element from each equivalence class, adding them, then taking the equiva-
lence class of the result) is independent of the choice of representative element. We need
to show a similar fact for negation, that is,

14 ISABEL LONGBOTTOM

theorem neg_resp_equiv {G H : game}
(h : equiv G H)
:equiv (neg G) (neg H) := sorry

noting that this theorem can bemade to follow from neg (G + H) = neg G + neg H

and neg (neg H) = H , given a lemma of the form

theorem neg_zero_iff {G : game}
: is_zero G ↔ is_zero (neg G) := sorry

Finally, wemust show that the equivalence classes form an abelian group under the inher-
ited addition operation. This means proving commutativity, associativity, and the inverse
property. However, we note that the inverse property is (almost) equivalent to reflexivity
of the equivalence relation, so we need only demonstrate the other properties:

theorem add_zero {G : game} : equiv (G + 0) G
:= sorry

theorem zero_add {G : game} : equiv (0 + G) G
:= sorry

theorem add_assoc {G H K : game}
: equiv ((H + G) + K) (H + (G + K)) := sorry

theorem add_comm {G H : game}
: equiv (G + H) (H + G) := sorry

Looking at the above lemmas, we note that to prove most of them, we wish to be able to
commute and reassociate addition inside is_zero() . For example, assuming reflex-
ivity, we want to be able to rewrite the statement of commutativity as follows

is_zero((G + H) - (H + G)) ↔ is_zero((G - G) + (H - H))

and then use the fact that G - G and H - H are both zero games to prove the rear-
ranged version on the right. This kind of rearrangement can then be used to prove many
of the above lemmas.
Our general strategy was thus as follows:

• prove reflexivity, that is, that G - G is a zero game for any game G ;
• prove some rearrangement lemmas, likely including one of the form

is_zero(G + H) ↔ is_zero(H + G)

and a corresponding lemma for associativity;
• prove that the sum of two zero games is a zero game.

We hoped to then apply these lemmas to all, or most, of the above. Proceeding in this
way, we were able to prove reflexivity2 by induction.

2The general strategy was the same as in the mathematical proof outlined in section 3.3, and as we expected,
we were required to provide almost the same proof four times, once for each of the four cases.

COMBINATORIAL GAME THEORY IN LEAN 15

3.5. Rearrangement - SomeProblems and Solutions. Wenext proved some rearrange-
ment lemmas. Our first approach was to prove the following by induction:

lemma is_zero_comm {G H : game} :
is_zero (G + H) ↔ is_zero (H + G) := sorry

lemma is_zero_assoc {G H K : game} :
is_zero (G + (H + K)) ↔ is_zero ((G + H) + K) := sorry

However this was difficult to do directly. To illustrate the problem, we note that in the
forwards direction for commutativity, the induction hypothesis produced for the left op-
tions of G was of the form

∀ (a : G_l), is_zero (G_L a + H) ↔ is_zero (H + G_L a)

This is vacuously true, but not particularly useful, since neither side of this statement is
true3. A more useful induction hypothesis involves a similar statement about negative or
fuzzy games, perhaps something of the form

∀ (a : G_l), is_neg_fuzz (G_L a + H)
↔ is_neg_fuzz (H + G_L a)

In light of this, it should in theory be possible to prove the following lemma by induction,
using each part of the induction hypothesis in the proof of at least one other part of the
statement:
lemma outcomes_commute {G H : game} :
(is_zero (G + H) ↔ is_zero (H + G)) ∧
(is_fuzz (G + H) ↔ is_fuzz (H + G)) ∧
(is_neg (G + H) ↔ is_neg (H + G)) ∧
(is_pos (G + H) ↔ is_pos (H + G)) := sorry

However, this would not be a particularly nice approach, since we would need to pro-
duce proofs for approximately 16 different cases. We note that we originally defined
each of these four outcome classes in terms of just two recursively defined properties,
is_neg_fuzz and is_pos_fuzz , in order to avoid a similar kind of mutual re-
cursion. By reframing this lemma in terms of only two predicates instead of four, we
can cut down the number of cases by at least a factor of two. We state our reformulated
rearrangement lemma as:

lemma neg_fuzz_pos_fuzz_comm {G H : game} :
(is_neg_fuzz (G + H) ↔ is_neg_fuzz (H + G)) ∧
(is_pos_fuzz (G + H) ↔ is_pos_fuzz (H + G)) := sorry

We were able to prove this lemma via a straightforward induction. We were similarly
able to prove a form of associativity using this method. The proofs of the statements
we wanted about is_zero were then direct applications of these lemmas, since we
defined is_zero as a simple compound logical statement in terms of is_pos_fuzz ,
is_neg_fuzz .

3Since G + H is a zero game, each of its left options is fuzzy or negative. Hence G_L a + H is fuzzy
or negative, so cannot be a zero game.

16 ISABEL LONGBOTTOM

Leaving aside for now the proof that the sum of two zero games is a zero game, we wish
to apply our rearrangement lemmas to, say, the proof that addition commutes on the
quotient. As mentioned above, we want to prove that
is_zero((G - G) + (H - H)) → is_zero((G + H) - (H + G))

since the right hand side here is the definition of equiv (G + H) (H + H) . How-
ever, only using the two rearrangement lemmas above, this is impossible. The problem
is that when using commutativity and associativity under ordinary circumstances, we
implicitly assume that the notion of equality we are working with is an equivalence re-
lation. This means that having proven, say, A + B = B + A, we automatically know
that (A + B) + C = (B + A) + C . However, in this context, we wish to use these
rearrangement lemmas to show that is_zero defines an equivalence relation. So, for
example
is_zero((G + H) + X) ↔ is_zero((H + G) + X)

does not follow directly from the rearrangement lemmas we already have. Moreover,
using the two rearrangement lemmas we proved, it is not possible to achieve all possible
permutations of an arbitrary string of addition operations. The solution we discovered to
this problem was to state and prove two additional rearrangement lemmas, namely
lemma neg_fuzz_pos_fuzz_zoom_comm {G H X : game} :
(is_neg_fuzz ((G + H) + X) ↔ is_neg_fuzz ((H + G) + X)) ∧
(is_pos_fuzz ((G + H) + X) ↔ is_pos_fuzz ((H + G) + X))
:= sorry

lemma neg_fuzz_pos_fuzz_zoom_assoc {G H K X : game} :
(is_neg_fuzz ((G + (H + K)) + X)

↔ is_neg_fuzz (((G + H) + K) + X)) ∧
(is_pos_fuzz ((G + (H + K)) + X)

↔ is_pos_fuzz (((G + H) + K) + X)) := sorry

and the corresponding statements for is_zero . Using all four of these rearrangement
lemmas, and the statement
lemma add_zero_still_zero {G H : game} (hG : is_zero G) :
is_zero H ↔ is_zero (G + H) := sorry

we were able to prove all of the lemmas stated in section 3.4. This allowed us to construct
the abelian group of games, and prove that it is an abelian group under the inherited
addition and negation operations.

4. Persistent Problems

4.1. Ordered Indexing and its Consequences. In all of the valid definitions of a com-
binatorial game we were able to construct, we indexed the left and right options in some
ordered manner, rather than representing the left (resp. right) options as a set with no
further structure. This had some unfortunate arithmetic consequences. One of these was
that addition as defined on games without the equivalence relation was not associative
or commutative. To highlight this problem, we exhibit the proofs of associativity and
commutativity in the unordered theoretical context, and demonstrate why they fail in
the ordered context we implemented.

COMBINATORIAL GAME THEORY IN LEAN 17

In the theoretical context, where the left and right options are each defined as sets, we
have
G+H = ({GLi +H|i ∈ GL} ∪ {G+HLi |i ∈ HL}, {GRj +H|j ∈ GR} ∪ {G+HRj |j ∈ HR})

= ({G+HLi |i ∈ HL} ∪ {GLi +H|i ∈ GL}, {G+HRj |j ∈ HR} ∪ {GRj +H|j ∈ GR})
= ({HLi +G|i ∈ HL} ∪ {H +GLi |i ∈ GL}, {HRj +G|j ∈ HR} ∪ {H +GRj |j ∈ GR})
= H +G

with the reordering in the second line allowed because the union operator on sets is
commutative, and the third equality by Conway Induction. The problem we encounter
in our implementation of games comes in line 2. We can apply Conway Induction to
commute the sums within individual left and right options, so it is possible to prove that
G +H and H + G have the same left options as each other and the same right options
as each other, but these options do not appear in the same order. The corresponding
operation in our definitions to the set union here is either list concatenation (in game₁)
or the direct sum of two types (in the arbitrary indexing context), neither of which are
commutative.
One possible solution to this problem would be to apply an equivalence relation which
made two games equal if the left options of one were some permutation of the left options
of the other, and similarly for the right options. This would allow us to prove commuta-
tivity (and associativity, since the proof is similar and breaks in the same way) however
it is not a particularly desirable solution. This equivalence relation would not give us an
abelian group, since negation as defined previously would not work. Also, the equiva-
lence relation defined in section 3.4 would allowed us to eventually prove commutativity
and associativity anyway.
This leaves us in a somewhat frustrating position: the equivalence classes which form
an abelian group in the theory still form an abelian group in this implementation, but
a greater portion of the group structure depends on the equivalence relation, making
several proofs more complicated.

4.2. The Sum of Two Zero Games. In section 3.5, we stated the following lemma about
zero games:

lemma add_zero_still_zero {G H : game} (hG : is_zero G) :
is_zero H ↔ is_zero (G + H) := sorry

This is the final part of this project to be done, and the only part of constructing the abelian
group of games which we were unable to complete. In the theory of combinatorial games,
the proof follows from the following theorem:

Theorem. The sum of a zero game G and any other game H has the same outcome class
as H .

Proof. Whoever has a winning strategy in H may win G +H by always playing in the
following way. When it is her turn to move in G + H , the player should make a move
in H according to her winning strategy in H , except when her opponent moves in G, in
which case the player should reply in G according to the winning stategy for the second
player in G. We note that since the player moves in G only in reply to her opponent’s
moves, she is always the second player in G, and so has a winning strategy there. Also,
since the players alternate moves in G, they must also alternate moves in H , so in the
sum play proceeds inH exactly as it does when we consider just the gameH . This means

18 ISABEL LONGBOTTOM

that the player will never be lost for a move in either game while her opponent still has
a move in that game, so will win the sum. �
The fact that the statement of our lemma is an if and only if then proceeds from the fact
that the four possible outcome classes are disjoint. Wewere unable to prove the lemmawe
want directly. We then tried unsuccessfully to prove each of the following formulations
of similar lemmas:
lemma neg_fuzz_pos_fuzz_add_zero_iff
{G H : game} (h : is_zero G) :
(is_neg_fuzz H ↔ is_neg_fuzz (H + G)) ∧
(is_pos_fuzz H ↔ is_pos_fuzz (H + G)) := sorry

lemma neg_fuzz_pos_fuzz_add_zero
{G H : game} (h : is_zero G) :
(is_neg_fuzz H → is_neg_fuzz (H + G)) ∧
(is_pos_fuzz H → is_pos_fuzz (H + G)) := sorry

Our problems in each case can be summarised as follows:
• to prove the forwards direction of the implication, we needed the reverse direction
of the implication to appear in the inductive hypothesis;

• the reverse direction of the implication was difficult to prove by induction, since
the the proof in the theory doesn’t construct a winning strategy inH given one in
G+H , it instead uses the fact that the four possible outcome classes are disjoint
to derive a contradiction if H has a different outcome from G+H .

This meant that in order to prove the forwards direction, we seemed to be required to
prove both directions simultaneously by mutual induction, but to prove the reverse di-
rection we needed to first prove the forwards direction separately. We were unable to
resolve these difficulties.

5. Summary of Results

We were able to define combinatorial games in Lean, define the four possible outcome
classes for games (positive, negative, fuzzy, and zero) and prove a comprehensive set of
lemmas about these outcome classes. We were also able to define addition and negation
operations on games.
We were able to define the equivalence relation needed to construct the abelian group of
combinatorial games, and state the required lemmas for proving that this does, in fact,
construct an abelian group under the inherited addition and negation operations and that
all the required operations were well-defined. Using one lemma which we were unable to
prove in Lean, we were able to prove all of these and thus to construct the abelian group
of games.

6. References
[1] Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem proving in Lean. Microsoft Research,

https://leanprover. github. io/tutorial/tutorial. pdf, 2015.
[2] Mario Carneiro. Surreal numbers. https://github.com/leanprover-community/mathlib/blob/master/src/set_theory/surreal.lean,

2019.
[3] John H Conway. On numbers and games. AK Peters/CRC Press, 1976.
[4] Dierk Schleicher andMichael Stoll. An introduction to conway’s games and numbers.MoscowMathematical

Journal, 6(2):359–388, 2006.

	1. Introduction
	1.1. A Background on Combinatorial Game Theory
	1.2. A Background on Dependent Type Theory and Lean
	1.3. Project Summary

	2. A First Attempt at Defining Combinatorial Games
	2.1. Definition of a Game
	2.2. Well-Founded Recursion
	2.3. The Inferred Induction Principle Versus Conway Induction

	3. A Better Attempt
	3.1. Arbitrary Indexing
	3.2. Positive, Negative, Fuzzy, and Zero Games
	3.3. Addition and Negation in this Context
	3.4. The Equivalence Relation - Required Proofs
	3.5. Rearrangement - Some Problems and Solutions

	4. Persistent Problems
	4.1. Ordered Indexing and its Consequences
	4.2. The Sum of Two Zero Games

	5. Summary of Results
	6. References

